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The competition

* Photometric LSST Astronomical Time-series Classification Challenge
(PLaStiCC)

* Simulated time-series of flux (light curves) of astronomical objects in
6 different passbands (filters)

* 14 classes in training set, 15 classes in test set
* 1,102 teams/ 1,394 participants



Light curve data

object_id: Primary key of the time series. (Will be used to join with the metadata table)

mjd: the time in Modified Julian Date (MJD) of the observation. The MID is a float number,
representing the number of days from midnight on November 17, 1858.

passband: The specific LSST passband integer, such thatu, g, r,i,z,y=0, 1, 2, 3,4, 5in which it
was viewed.

flux: the measured flux (brightness) in the passband of observation as listed in the passband
column.

flux_err: the uncertainty on the measurement of the flux

detected: If detected equals 1, the object’s brightness is significantly different at the 3o level
relative to the reference template. Otherwise, it is O.



Metadata

* object_id: the Object ID, unique identifier (given as int32 numbers).
* ra: right ascension, sky coordinate: longitude, in degrees.
» decl: declination, sky coordinate: latitude, in degrees.
 gal |l: Galactic longitude, in degrees.

» gal b: Galactic lattitude, in degrees

* hostgal specz: Spectrometric redshift

* hostgal photoz: Photometric redshift

* hostgal photoz err: Photometric redshift error estimation
* distmod: Log-distance calculated by photometric redshift
* mwebv: milky way dust extinction

e ddf: Boolean DDF area or WDF area

 target: Target class
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Evaluation metric

* The competition uses a weighted multi-

M N Ui class logarithmic loss.
D Wit 2w - Inp;
Log Loss

* The effect is such that each class is roughly
equally important for the final score.




Approach

* Feature engineering
* Smote to account for imbalance
* Train a LightGBM(Gradient Boosting Machine) model



Feature engineering

* Massive test set (3.5m curves) => Incrementally add features

e How?

* look at the light curves for patterns
research for useful features for time-series
research for useful features for light-curves
kernels and discussions in the Kaggle platform
cross-validation score and leaderboard score



Time width features

* mjd_diff detected: Time difference between the last detected flux
and the first one. This feature is good to differentiate between
periodic and aperiodic events.

 Mjd_width _max_decay div_{N}: Time of decay of a light curve from
maximum value to N% of maximum



Flux features

e Slope _after max{i}. slope term of linear fit after maximum
e Slope before max{i}: slope term of linear fit after maximum

* Intercept_before_max{i}. intercept term of linear fit before maximum
value for passband i

* Intercept _after max{i}: intercept term of linear fit before maximum
value for passband i

e Time-Series Autocorrelation
* Fourrier Coefficients

* Basic statistics per passband and in total: maximum, minimum, mean,
median, skewness, kurtosis.



Flux / flux_err ratio features

Basic statistics per passband and in total: maximum, minimum, mean,
median, skewness, kurtosis.



Color features

Combination of maximum and intercept after max per passband:

1. for i in range(6):

2. for j in range(i+l, 6):

3. df['{e}{1}__feature'.format(i,j)] = df['{0}__feature'.format(i)] / df['{0}__
feature'.format(j)]



Absolute Magnitude

Absolute magnitude during maximum flux is a distinguishing term
between different types of astronomical objects.

E
M = —2.5 *log4, ( n;ax> — distmod
0

https://en.wikipedia.org/wiki/Absolute magnitude



https://en.wikipedia.org/wiki/Absolute_magnitude

Training

e 5fold cross validation
e SMOTE on each fold



Predicting

* Average 5classifier predictions trained on 5 folds
* Class_99 (Unknown class): Pggss., = [1(1 — Peigss;)



Feature Selection - Unused features

* ra, decl, gal |, gal b (positional attributes)
* hostgal_specz (spectroscopic redshift — only in few test set examples)



Feature Selection - Importance

* Select N most important

* After having limited amount of features, removed the ones that
overfitted the training set and did not generalize to the test set



Team merge

* Merged with Max Halford and Adityasinha

* Blending our predictions put us to 16" position 1 week before the
end and we didn’t have time to improve after.



What | learned

* | learned to use the powerful LGBM, a true hammer for data science.
* | learned different techniques to deal with imbalanced data.

* It was my first time dealing with astronomical or time-series data.
Researching about the extraordinary stuff that comprise the universe
has been truly interesting.

* It was my first Kaggle competition ever and | competed head-to-head
with some of the best data scientists.



What | earned

* A silver medal for my ranking in the competition (22/ 1,102)

* A gold medal for a high-scoring kernel | published which at the time
of writing this report has received 102 upvotes and at has been
forked almost 400 times.

5 silver and 25 bronze medals for my contributions in the discussions.

* https://www.kaggle.com/iprapas/ideas-from-kernels-and-discussion-
|b-1-135



https://www.kaggle.com/iprapas/ideas-from-kernels-and-discussion-lb-1-135

Contribution

* Gold Kernel (102 upvotes, 400 forks)
has pushed for better models

* Active participation in the discussions



object: 77157, class: 6
period: 441.6, period score: 0.7512, mean skew: 1.139
photoz: 0.0, photoz_err: 0.0
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object: 4173, class: 15

period: 0.996, period score: 0.5815, mean skew: 1.989
photoz: 0.5512, photoz_err: 0.0221
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period: 0.2138, penod score: 0.273, mean skew: -2_269
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object: 7566, class: 16
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period: 413.3, period score: 0.5938, mean skew: 2.313
photoz: 0.1711, photoz_err: 0.0185
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object: 10757, class: 52
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object: 268977, class: 53
period: 294 4, period score: 0.7202, mean skew: 0.9037
photoz: 0.0, photoz_err: 0.0
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object: 45060, class: 62

period: 0.9987, penod score: 0.6343, mean skew: 2.235
photoz: 0.33, photoz_err: 0.1387
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object: 37872, class: 67
period: 0.4992, penod score: 0.3801, mean skew: 2.343
photoz: 0.2448, photoz_err: 0.0217
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object: 7315, class: 88
period: 473.2, period score: 0.8446, mean skew: 0.7428
photoz: 0.1337, photoz_err: 0.0171
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object: 13194, class: 90
period: 0.996%, penod score: 0.4002, mean skew: 2 437
photoz: 0.5624, photoz_err: 0.2843
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object: 615, class: 92
period: 0.3245, period score: 0.954, mean skew: 0.244
photoz: 0.0, photoz_err: 0.0
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object: 115336, class: 95
period: 0.9987, penod score: 0.8343, mean skew: 1.69
photoz: 1.7123, photoz_err: 0.0766
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