
Noname manuscript No.
(will be inserted by the editor)

Continuous Training and Deployment of Deep Learning Models

Ioannis Prapas · Behrouz Derakhshan · Alireza Rezaei Mahdiraji · Volker Markl

Received: date / Accepted: date

Abstract Deep Learning (DL) has consistently surpassed
other Machine Learning methods and achieved state-of-the-
art performance in multiple cases. Several modern applica-
tions like financial and recommender systems require mod-
els that are constantly updated with fresh data. The promi-
nent approach for keeping a DL model fresh is to trigger
full retraining from scratch when enough new data are avail-
able. However, retraining large and complex DL models is
time-consuming and compute-intensive. This makes full re-
training costly, wasteful, and slow. In this paper, we present
an approach to continuously train and deploy DL models.
First, we enable continuous training through proactive train-
ing that combines samples of historical data with new stream-
ing data. Second, we enable continuous deployment through
gradient sparsification that allows us to send a small percent-
age of the model updates per training iteration. Our experi-
mental results with LeNet5 on MNIST and modern DL mod-
els on CIFAR-10 show that proactive training keeps models
fresh with comparable - if not superior - performance to full
retraining at a fraction of the time. Combined with gradi-
ent sparsification, sparse proactive training enables very fast
updates of a deployed model with arbitrarily large sparsity,
reducing communication per iteration up to four orders of
magnitude, with minimal - if any - losses in model quality.
Sparse training, however, comes at a price; it incurs over-
head on the training that depends on the size of the model
and increases the training time by factors ranging from 1.25
to 3 in our experiments. Arguably, a small price to pay for

Ioannis Prapas · Volker Markl
Technische Universität Berlin, Berlin, Germany
E-mail: iprapas@protonmail.com, volker.markl@tu-berlin.de

Behrouz Derakhshan · Alireza Rezaei Mahdiraji
Deutsches Forschungszentrum für Künstliche Intelligenz,
Berlin, Germany
E-mail: behrouz.derakhshan@dfki.de, alireza.rm@gmail.com

successfully enabling the continuous training and deploy-
ment of large DL models.

Keywords Deep Learning ·Model Deployment · Continu-
ous Training · Continuous Deployment

1 Introduction

Deep Learning (DL) is a subfield of Machine Learning (ML),
involving Deep Neural Network (DNN) models, which has
shown huge success in recent years. It has dramatically im-
proved the state-of-the-art in many fields, like speech recog-
nition [1], computer vision [2], and natural language un-
derstanding [3]. This success is explained by the fact that
the quality of DL models improves with increasing dataset
sizes, due to their ability to learn representations directly
from data.

However, DL still faces several challenges. First, DNN
results are not easily interpretable [4]. Second, their opti-
mization is not theoretically well understood, relying on non-
convex optimization [5]. Third, they are resource-intensive,
taking days or weeks to train on expensive GPU clusters.
Training DNN models requires extremely large datasets and
compute resources that are exponentially rising [6]. Fourth,
DL models can be massive in size; recently, the GPT-3 [3]
architecture featured a staggering 175 billion parameters.

The two last problems of DL (compute-intensive, mas-
sive model sizes) are accentuated in the era of the Internet
of Things (IoT) when we are surrounded by sensory de-
vices (e.g. smartphones, cameras, sensors) that collect and
generate data streams continuously [7]. Although there is
a growing need for continuously updated DL models, cur-
rent systems support periodic full retraining of DL models
when enough new data are available or the performance of
models degrades [8]. We find this process to be wasteful
and resulting in stale models. Wasteful, because it discards

2 Ioannis Prapas et al.

the previously learned model that has consumed consider-
able amounts of compute-resources. Even if the previously
learned model is not discarded but used for warm-starting,
it still needs several epochs to converge and might not give
state-of-the-art generalization [9]. Model staleness is a di-
rect consequence of continuously arriving data; by the time
a model is retrained, enough new data may be available to
trigger a new retraining. Periodical retraining time grows as
the dataset size increases. The fast arrival of new data to-
gether with an increasingly slow retraining process are the
recipe for stale models in production.

To overcome the staleness of DL models, we propose to
continuously train the previously learned model with proac-
tive training [8]; a strategy for continuous training that per-
forms Stochastic Gradient Descent (SGD) iterations with
batches formed by a combination of new data and samples
of historical data. We continuously update the deployed DL
model residing on a remote machine using the gradient up-
dates obtained by proactive training. For large DL models,
the transmission of gradients over the network can easily be-
come a communication bottleneck and endanger the privacy
of training data. We opt to adapt our continuous training ap-
proach with an idea from the distributed DL training domain
to reduce the communication cost of model updates among
different workers [10–12]. More specifically, we sparsify the
gradients calculated during each training iteration, keeping
an accumulated memory of the unused gradients of previous
iterations. The sparse gradient vectors are not only used for
training but also communicated to the remote machine that
handles the model deployment. The sparsification signifi-
cantly reduces the communication needed to deploy model
changes (allowing mini-batch level deployment).

Our contributions are as follows. First, we adapt proac-
tive training to enable continuous training of DL models
(Section 3). Second, we extend it with gradient sparsification
to reduce the deployment cost and enable continuous de-
ployment of DL models (Section 4). Finally, we perform an
extensive experimental analysis on the impact of both proac-
tive training and sparsification on training time, deployment
cost, and model quality (Section 5).

2 Related Work

We divide the related work into two groups: model training
when new data arrives, and deployment of DNNs models.

The standard approach for DL model training is to gather
a big dataset and train the DL model over multiple epochs
(passes over the dataset), while reshuffling the dataset be-
fore each epoch. Mini-batch SGD and its variants have sev-
eral properties that are suitable for large scale datasets [13,
14] and are the de-facto optimization methods for DL train-
ing. After the initial training, when enough new data have
become available or the model’s performance has degraded

the training process is restarted from scratch to prevent ex-
cessive model staleness. This is known as full retraining or
batch learning. As opposed to batch learning, online learn-
ing keeps models fresh incrementally as new data arrives.
Online learning for DL has received limited attention [15,
16], but should be highlighted more, as IoT applications gain
more ground and produce streams of data [17]. In contrast to
batch learning methods with expensive retraining cost when-
ever new training data arrive, online learning performs up-
dates only based on the new training data. This makes online
learning highly scalable and suitable for large-scale applica-
tions. However, in many cases, to converge to a good model,
there is merit to continue training on historical data and not
only take into account new data.

In some cases, the previously trained model still has some
value [18] and this is why platforms like Tensorflow Ex-
tended (TFX) [19,20] allow for the training to be started
with the parameters of the previously trained model, a pro-
cess called warm-starting. Recent work by Derakhshan et
al. [8] shows that when it comes to training ML models, full
retraining is not always required and online learning is not
good enough. They propose to periodically trigger proactive
training, a process that combines new data with samples of
historical data into mini-batches for SGD-based optimiza-
tion. This continuous training approach achieves superior
quality to online training. When compared to full retrain-
ing, it achieves similar model quality, while reducing the
total data processing and model training time by an order
of magnitude. While Derakhshan et al. use proactive train-
ing to continuously train models with convex loss functions,
such as SVMs and Logistic Regression models, it has never
been tested with DL models until this study. We define and
evaluate the proactive training for continuously training DL
models. In a different setting than ours, this problem is simi-
lar to continual learning [21–24]. In that framework, a model
is learning tasks one after another with the goal to learn the
last task without catastrophic forgetting [25] that is losing
the ability to perform on previous tasks.

After training, one must deploy the DL model and make
it available for inference. Continuously triggering proactive
training implies the continuous deployment of DL models.
However, modern DL models can have a huge number of
parameters and sizes ranging from several hundred MBs to
several GBs. Naively deploying such big models continu-
ously is not feasible because of the intractable communi-
cation cost. Work in gradient compression offers a promis-
ing direction for DL deployment. In this area, we find ap-
proaches that are meant to minimize the communication cost
of parallel or distributed training. Instead of looking to com-
press the model, gradient compression is looking to mini-
mize the model changes at each optimization step. Hogwild
[26] allows workers to send gradients asynchronously with-
out any sacrifice in convergence rates. Alistarh et al. [27]

Continuous Training and Deployment of Deep Learning Models 3

propose a quantized extension of SGD, called Quantized
SGD (QSGD), which provides a trade-off between conver-
gence rate and compression. Aji et al. [12] sparsify gradient
updates by only considering the top-k components in every
iteration and accumulating smaller gradients. Deep gradient
compression [10] shows that extreme sparsification reduces
communication costs by 99.9% and works well with mod-
ern deep learning architectures. Koloskova et al. [28] use
it to perform decentralized training under arbitrarily large
sparsification. Stich et al. [11] prove its good convergence
guarantees provided that a memory accumulates not updated
gradients. To the best of our knowledge, our work is the first
to consider such gradient compression schemes for contin-
uous deployment of DL models without any loss in model
quality.

3 Continuous Training of DL Models

In this section, we describe proactive training [8] as a method
that enables the continuous training for DL models. In proac-
tive training, an ML model is updated using mini-batch SGD,
where mini-batches are formed by combining new data with
samples of historical data. After the training, new data be-
come part of the historical dataset.

The proactive training initiates a mini-batch training of
size b after a trigger condition on the data stream is met. As-
suming the number of new elements satisfying the trigger
condition is t (also called trigger size), the proactive train-
ing constructs a mini-batch of size b including the t new ele-
ments and (b− t) elements sampled from the historical data.
These mini-batches are used to calculate SGD gradient up-
dates. At the end of a training iteration, the t new elements
become part of the historical dataset and are subject to be
sampled in future iterations. This procedure is summarized
in lines 1, 2, and 9 of Algorithm 1 with a regular SGD update
in between lines 2 and 9.

In this setting, a proactive training iteration is triggered
after t new elements arrive from the data stream. By control-
ling the trigger size, the proactive training provides a bal-
ance between online gradient-based optimization and mini-
batch SGD:

– A trigger size equal to zero (t = 0) is equivalent to mini-
batch SGD.

– A trigger size equal to the batch size (t = b) is equivalent
to mini-batch online gradient descent.

It is important to consider the following points when
using proactive training. First, proactive training induces a
bias towards historical data, as new data are expected to be
selected fewer times for training. Second, the independent
and identically distributed data assumption [29] can break
when we use elements from the stream as they arrive. Third,

while simple mini-batch SGD is done in epochs with con-
tiguous access over the dataset, proactive training assumes
sampling from large datasets, breaking the contiguous ac-
cess. This does not pose a big challenge, as it can be solved
through smart materialization [8], but still remains an ele-
ment to consider.

4 Continuous Deployment of DL Models

After training, a DNN is typically deployed in an environ-
ment where it will serve prediction queries. Continuous train-
ing, as described in Section 3, implies continuous deploy-
ment, which in our case means transferring the gradient up-
dates of the DNN’s parameters across the network after ev-
ery mini-batch update. This incurs a huge deployment cost
as modern DNNs can have millions if not billions of param-
eters. The deployment cost is decomposed as the sum of the
communication cost and the loading cost. The communica-
tion cost is the time it takes to send the model’s parameters
to the deployment server. The loading cost is the time it takes
to update the model given the new parameters.

Typically, the communication cost is much larger than
the loading cost. Thus, in order to reduce the deployment
cost, our work focuses on reducing the communication cost
of sending model changes at every proactive training update.
This problem has successfully been addressed for reducing
the communication cost of distributed training. Using sparse
SGD with memory [11], at every iteration only k out of
N (k � N) total gradients are selected for updating the
model while the rest are kept accumulating in memory. Pro-
vided that the gradients are selected with appropriate opera-
tors, sparse SGD offers the same convergence rate as regular
SGD [11]. Assume layer l of the DL model has N parame-
ters and integer k is given (k � N). We apply the following
two sparsification operators on the parameters of all layers
of a given DL model:

– Random-k: Selects k out of N parameters uniformly at
random.

– Top-k: Selects k out of N parameters with the largest
absolute value.

To facilitate continuous deployment, we extend proac-
tive training to perform sparse updates at every iteration.
This means at every training iteration, we update only a
small constant percentage of the total model parameters. Al-
gorithm 1 shows how the extended proactive training works.
The algorithm takes as input a datasetD, the model’s param-
eters θ, the learning rate α, and the mini-batch size b. More-
over, it receives the selection operator selectork (randomk

or topk) and the memory of gradients which keeps accumu-
lated unused gradients from past iterations. We compute the
gradients g using mini-batch SGD (Line 3) and add residual

4 Ioannis Prapas et al.

gradients of the past iterations (mgrad) to it (Line 4). Then,
we apply the selection operator selectork and selects only
k gradients to be used for updating the model (Line 5). We
update the parameters of the local model in the machine that
performs the training (Line 6). We send the k gradients over
the network to update the deployed model (Line 7). We up-
date the residual of the gradients (Line 8) and add the t data
points to the historical dataset D (Line 9).

Algorithm 1: Continuous training and deployment
iteration

Input: Selection Operator selectork, trigger size t, Learning
Rate α, Mini Batch Size b

Data: Dataset D, Stream s, Params θ, Memory mgrad
Result: Params θ, Dataset D, Memory mgrad

1 Fetch t new labeled data points from the stream
2 Sample b− t data points from D

3 g = 1
b

∑b

i=1
∂
∂θ
L(f(xi, θ), yi)

4 g = g +mgrad
5 gsparse = selectork(g)
6 θ = θ − α ∗ gsparse
7 Send gsparse to update deployed model
8 mgrad = g − gsparse
9 Append t new data points to D

This deployment method, however, is not constrained to
run only in the case that we perform proactive training. With
large data streams, one can imagine directly using online
mini-batch SGD, as it has the nice property that it follows
the gradient of the true generalization error. Sparse continu-
ous deployment can effectively be used in that case to con-
tinuously deploy a model that is learned in an online fashion.

Hyper-parameters of Sparse Continuous Training

There are two important hyper-parameters of the Sparse Con-
tinuous Deployment. The first hyper-parameter is the selec-
tor (topk vs randomk). In theory, both the randomk and
the topk can achieve the same convergence rate. However, in
practice, topk has been shown to achieve better performance
[11], as the relative gradient magnitude is thought to provide
a simple heuristics for gradient importance [10]. The second
hyper-parameter is the sparsification ratio, i.e., the percent-
age of the enforced sparsity. Previous work has shown that
sparse SGD with memory can converge fast under arbitrar-
ily large sparsification, with Deep Compression [10] achiev-
ing good convergence reducing 99.9% of the communicated
gradients.

We show the impact of these hyper-parameters in the
evaluation section.

5 Evaluation

We conduct experiments to compare the three training ap-
proaches, i.e., full, online, and proactive in terms of quality
and training time. Furthermore, we investigate the impact of
trigger size in proactive training. Lastly, we study the impact
of sparsification on model quality and deployment overhead.

To meet this goal, we simulate a scenario in which an
initial dataset is available for the initial training and the rest
of the data become available in a streaming fashion. The
initial training happens on the initial dataset for a constant
number of epochs.

Then, we compare the different training approaches:

– For the full retraining approach, a full retraining is trig-
gered periodically whenever c new elements are avail-
able. Each retraining is restarted from scratch and exe-
cuted for e epochs, like the initial training.

– For the online training approach, the model is warm-
started with the generated model from the initial train-
ing. An online training iteration is triggered once b new
elements are available in order to perform a mini-batch
SGD iteration.

– For the proactive training approach, similar to online
training, the model is warm-started with the generated
model from the initial training. As presented in Section
3, a proactive training iteration is triggered once t new
elements are available. We investigate the impact of the
trigger size t on training time and model accuracy. In
addition, we use sparsity and examine how the sparsifi-
cation ratio and the choice of the selection operator af-
fect the overhead training and the model quality of the
deployed model.

To evaluate and compare these approaches we use the
prequential evaluation [30], which is a common method
to evaluate ML algorithms on data streams. In prequential
evaluation, every example in the stream is first used to test
the model, and then to train it.

5.1 Setup

Hardware & Software. We run all experiments on a server
with an Intel Xeon E7 with 128 GB of main memory and an
NVIDIA TESLA GPU K40 with CUDA 10.2. The code for
training and using DL models leverages the GPU and has
been written in Python 3.5, using the PyTorch [31] frame-
work (version 1.2.0). The state-of-the-art DNN architectures
that are used in the experiments have been imported from the
torchvision [32] library (version 0.4.0).

Datasets. We run our experiments on two common com-
puter vision datasets for benchmarking DL models, namely
MNIST [33] and CIFAR-10 [34]. We present only the main

Continuous Training and Deployment of Deep Learning Models 5

results of the MNIST experiments as they were initially used
to validate our methods. The CIFAR-10 experiments are then
given in detail.

Models. For the MNIST experiments, we use the LeNet-
5 [35] architecture, which represents a seminal CNN archi-
tecture. For the CIFAR-10 experiments, we use modern DL
models with different sizes and features. Mobilenet v2 [36]
is chosen as a compressed DL architecture with around 2
million parameters that is meant to run on mobile devices.
We are interested to see the effect of continuous training
and its sparse variants for such a compact model. Resnet18
[37] is chosen as a medium-sized model with around 11 mil-
lion parameters that includes many state-of-the-art (SOTA)
features, such as batch normalization and skip connections.
Resnet50 [37] is chosen as a deeper alternative of Resnet18
with slightly more than 23 million parameters. Densenet161
[2] is chosen as a very deep SOTA model with around 26.5
million parameters that is in a different family than the resid-
ual networks selected. We start the training for each of the
models with pre-trained weights on Imagenet [38] in order
to reduce the time needed to converge to good solutions.
This underestimates the time needed for the full retraining in
the general case, but allows to iterate over our experiments
much faster.

Hyper-parameters. This work proposes a general frame-
work for continuously training and deploying DL models.
To strengthen the generality of our work, we choose to re-
frain from rigorous hyper-parameter tuning. For all of our
experiments, we use the same training configuration:

– We use ADAM optimizer [39] with its default parame-
ters (learning rate 0.001, β1 0.9 and β2 0.999).

– For the proactive and online training approaches when
we warm-start the model, we also warm-start the learned
parameters of the ADAM optimizer.

– We set the batch size to 128, which has successfully
been used to obtain SOTA performance on the CIFAR-
10 dataset (which we extensively use in our experiments)
for several DL models [40].

Evaluation metrics. We use the prequential evaluation
technique and report the total training time and the cumu-
lative prequential accuracy for each one of the experiments.
We also capture the number of parameters that must be trans-
ferred at each case as a proxy for the communication cost.

5.2 Early experiments on MNIST

To initially validate our approach, we started with some early
experiments on a simple dataset (MNIST) and a simple DL
model (LeNet-5). Compared to full retraining and online
training, we found proactive training to achieve the best pre-
quential evaluation with data arriving in a streaming fash-
ion. Controlling the trigger size allows proactive training it-

erations to be triggered batch size
trigger size times more often than

online training. Even when using a trigger size that triggers
proactive training 32x more than online training, proactive
training still needs a fraction of the time of full retraining.
Meanwhile, sparse training allows us to achieve comparable
performance to the non-sparse variant under a large sparsi-
fication ratio, i.e., transferring only about 0.01% of the total
parameters per iteration. We identify that sparse training us-
ing the randomk selector is not stable at the beginning of
the training, confirming results from Lin et al. [10] that the
topk selector offers a good proxy for the importance of gra-
dient updates.

We refer the reader to the supplementary materials (On-
line Resource 1) for a detailed analysis of the MNIST exper-
iments.

5.3 DL models on CIFAR-10

We conduct experiments on CIFAR-10 [34], which is a more
complex dataset than MNIST, and train on it several SOTA
DL models: mobilenet v2 [36], resnet18 [37], resnet50 [37],
and densenet161 [2].

The first 10,000 examples are used for the initial train-
ing which is done for 25 epochs. In order to achieve a good
performance in a reasonable time, we warm-start all the mod-
els with weights of pre-trained models on Imagenet [38].
Full retraining is triggered every 10,000 new data points
that become available and is done for 25 epochs starting
from weights of pre-trained models on Imagenet.

Online training triggers one mini-batch SGD iteration
once mini-batch size (b = 128) new elements are available.
According to the prequential evaluation, each mini-batch is
first used for evaluation and then to train the model. No data
point is revisited in online training.

Proactive training triggers one mini-batch SGD itera-
tion once trigger size t new elements are available. Accord-
ing to the prequential evaluation, the new elements are first
used for evaluation and then to train the model. After new
elements are used for a first training iteration, they become
part of the historical dataset and are subject to being sampled
for future training iterations. For proactive training we ex-
periment with i) different trigger sizes (t = 64, 32, 16, 8), ii)
and different sparse selection ratios (1%, 0.1%, 0.01%) only
using the sparse selector topk that proved more promising
in the early MNIST experiments.

5.4 Full Retraining vs Online Training vs Proactive
Training

Figure 1 shows the results of the prequential evaluation for
each model and training approach (full retraining, online,

6 Ioannis Prapas et al.

proactive). Table 1 shows the corresponding total training
times.

The online training is the fastest method and the proac-
tive training finishes approximately batch size

trigger size more slowly
than online. Full retraining is the slowest method, needing
around 3 times more training time. Concerning the prequen-
tial evaluation, we see that generally, online training is the
worst method, followed by full retraining and proactive train-
ing which offers the best approach with increasing perfor-
mance as more iterations are triggered (smaller trigger size).

These are the general trends, but there is more info hid-
den in the details. For all models, it is evident that at the
very beginning of the online and proactive training they per-
form worse than the initial model. Online training takes the
longest to recuperate. Proactive training recuperates faster
when the trigger size is smaller. For mobilenet v2, there is
no clear winner among the proactive training approaches,
with respect to the trigger size. Until the 30000th point,
lower trigger size is better, but then all methods seem to
converge at a performance slightly better than full retraining.
Except for resnet18, where we see that the proactive training
outperforms the full retraining approach, we do not see large
gaps in final cumulative accuracy between proactive train-
ing and full retraining. More specifically, for densenet161,
resnet50, and mobilenet v2, we see the proactive training
performing better after stabilizing at the beginning of the
training, but then converging to a comparable cumulative ac-
curacy with full retraining.

5.5 Sparse Continuous Deployment

Figure 2 shows the results of the prequential evaluation for
each model with sparsification. We use the topk sparse se-
lector with selection ratios 1%, 0.1%, and 0.01% always
using proactive training with trigger size equal to 8. The
left part of Table 2 displays the average numbers of pa-
rameters changed per iteration for each one of the selection
approaches and the corresponding non-sparse variant. The
right part of Table 2 displays the corresponding total train-
ing times together with the full retraining and non-sparse
proactive training for comparison.

With respect to the training time, it is evident that the
topk selector induces a non-negligible overhead in the train-
ing process that depends on the size of the model. For mo-
bilenet v2 and resnet18, the sparse training times are on av-
erage larger by a factor of 1.48 and 1.7 respectively com-
pared to their non-sparse variant. Sparse training on mo-
bilenet v2 has the largest variance among different sparse
selection ratios with the overhead becoming slightly smaller
when fewer parameters are selected for all the networks.
For resnet50 and densenet161, the sparse training times are
larger than the non-sparse variant by a factor of about 2 and
3, respectively. While the two networks have about the same

number of parameters, the effect of running the topk se-
lection is much bigger for resnet50. This is explained by
the fact that resnet50 has more parameters per layer. Still,
even with this overhead, the training time of sparse proac-
tive training remains well below the total training time of
full retraining. However, this overhead is deemed negligible
as sparse training reduces the deployment cost by orders of
magnitude. For exact numbers, the reader is referred to Ta-
ble 2.

In general, sparse variants of proactive training follow
closely the cumulative accuracy curve of the non-sparse vari-
ant. An exception to this is the sparse proactive training of
resnet50 (Figure 2) with a 1% selection ratio, which falls
behind all the other approaches. In this set of experiments,
we notice that greater sparsification values (fewer gradients
used per iteration) lead to better prequential performance,
even better than the non-sparse variant, forming a larger gap
with the full retraining. We believe that this phenomenon is
the result of the topk operator selecting the most ”impor-
tant” gradients per iteration, ignoring non-important ones.
As a result, the sparsification provides some kind of regu-
larizing effect in the training process.

As expected, Table 2 shows that with selection ratios of
1.0% 0.1%, 1.0% and 0.1% of the gradients per layer are
changed per iteration accordingly. However, we see that for
selection of 0.01%, the number of selected parameters is
slightly larger than 0.01% of the total parameters. This dif-
ference is due to the fact that our implementation selects at
least one parameter per layer, which accounts for this dif-
ference for layers that have less than 10,000 parameters. We
discuss in detail the effect of the sparsification on the de-
ployment cost in Section 5.7.

5.6 Final model quality

Having seen the superior performance of continuous train-
ing in a streaming setting, we would like to quantify the final
model quality that each approach achieves. To this end, we
measure the accuracy of each final model on the reserved
test set of 10,000 images. We compare the models after the
full retraining which uses the whole dataset (FRwhole) and
the last full retraining (FRlast) which has not seen the last
10,000 elements, with the models after the end of online
training and proactive training with a trigger size of 8 with
and without sparsity for different topk selection ratios (1%,
0.1%, and 0.01%). Table 3 shows the results.

In all cases, full retraining that has access to the whole
dataset (FRwhole) achieves the best performance, and is con-
sidered an upper limit for our methods. We see that non-
sparse proactive training consistently achieves comparable
but slightly worse accuracy than the last full retraining, with
online training providing the worst final model quality in
all the cases. Sparse proactive training with sparse selection

Continuous Training and Deployment of Deep Learning Models 7

Model FR OL PR64 PR32 PR16 PR8

mobilenet v2 1381.2 31.6 57.6 129.2 214.9 442.2
resnet18 493.8 13.1 21.1 42.1 94.2 169.8
resnet50 3672.4 65.7 131.7 261.5 524.6 1042.5
densenet161 6864.4 122.1 242.4 486.4 952.1 1923.3

Table 1: Total training time in seconds for full retraining (FR column), online training (OL column) and proactive training
(PRt columns for trigger size t = 64, 32, 16, 8).

10000 20000 30000 40000 50000
Data points

0.70

0.72

0.74

0.76

0.78

0.80

0.82

C
um

ul
at

iv
e

A
cc

ur
ac

y

mobilenet_v2

FR PR8 PR16 PR32 PR64 OL

10000 20000 30000 40000 50000
0.70

0.72

0.74

0.76

0.78

0.80

0.82

resnet18

10000 20000 30000 40000 50000
0.70

0.72

0.74

0.76

0.78

0.80

0.82

resnet50

10000 20000 30000 40000 50000
0.70

0.72

0.74

0.76

0.78

0.80

0.82

densenet161

Fig. 1: Prequential evaluation for SOTA DL models on CIFAR. Comparison between full retraining (FR), online training
(OL) and proactive training ((PR− t lines for trigger size t = 64, 32, 16, 8)).

Avg number of params changed per iteration Total training time (sec)
DL Model FR/PR8 top1.0% top0.1% top0.01% FR PR8 top0.01% top0.1% top1.0%

mobilenet v2 2,110,358 22,305 2,287 333 1381.2 442.2 560.1 679 726.9
resnet18 4,068,411 111,800 11,201 1146 493.8 169.8 288.3 279.2 305
resnet50 15,810,578 235,192 23,567 2425 3672.4 1042.5 3001.1 3159.1 3266.5
densenet161 15,991,847 264,641 26,498 2886 6864.4 1923.3 3870.3 4032 4154.2

Table 2: Left: Average number of parameters changed per iteration for the non-sparse variants (full retraining - FR and non-
sparse proactive training - PR8) and with varying topk selection ratios (”topk%” columns for k = 0.01, 0.1, 1). Right: Total
training time in seconds for full retraining (FR column), non-sparse proactive training (PR8 column) and with various topk
selection ratios (topk% columns for k = 0.01, 0.1, 1).

1.0% is generally very close to its non-sparse variant, ex-
cept for the case of resnet18 where it falls by about 0.04,
achieving an accuracy closer to online training. Higher spar-
sification (top0.1% and top0.01%) training outperforms not
only the non-sparse variant in most cases but also the full
retraining with all models except for densenet161. This is
probably due to the regularizing effect of the topk sparse se-
lector as we described in the previous section. Among the
sparse variants, the one with the most extreme sparsification
(top0.01%) consistently outperforms the others, except for
mobilenet v2, where the sparse training with selection ratio
0.1% is the best. We suspect that this is due to the compact-
ness of mobilenet v2, which makes the sparsification above
a certain threshold converge slower. It is out of the scope of
this study to compare the differences in accuracy between
the different models.

In short, these experiments confirm that the model quali-
ties achieved by proactive training are comparable, if not su-

perior to the ones we get from the last full retraining. When
comparing with full retraining that has access to the whole
dataset, we should consider it as the upper limit in terms
of performance, but keep in mind that it will result in stale
models in production most of the time, as in real streaming
scenarios there is no time to do multiple passes on newly
arrived data.

5.7 Findings

Our experiments find the sparse proactive training method
to be suitable for continuous training and deployment. In all
of our experiments, online training provides the worst pre-
quential accuracy at the fastest training time. The proactive
training approach consistently achieves comparable or su-
perior performance than full retraining at a fraction of the
time. The topk sparse selector can keep a model updated
with sparse proactive training. Sparse proactive training fol-

8 Ioannis Prapas et al.

10000 20000 30000 40000 50000
Data points

0.70

0.72

0.74

0.76

0.78

0.80

0.82

C
um

ul
at

iv
e

A
cc

ur
ac

y

mobilenet_v2

FR Topk 1.0% Topk 0.1% Topk 0.01% PR8

10000 20000 30000 40000 50000
0.70

0.72

0.74

0.76

0.78

0.80

0.82

resnet18

10000 20000 30000 40000 50000
0.70

0.72

0.74

0.76

0.78

0.80

0.82

resnet50

10000 20000 30000 40000 50000
0.70

0.72

0.74

0.76

0.78

0.80

0.82

densenet161

Fig. 2: Prequential evaluation for SOTA DL models on CIFAR. Comparison between full retraining (FR), and proactive
training with a trigger size of 8 (PR-8) and various topk selection ratios (Topk for k = 1%, 0.1%, 0.01%).

DL model FRwhole FRlast OL PR8 top1.0% top0.1% top0.01%

mobilenet v2 0.8275 0.8173 0.7995 0.8129 0.8149 0.8196 0.8087
resnet18 0.8232 0.8047 0.7999 0.8041 0.8003 0.8081 0.8135
resnet50 0.8405 0.8217 0.8146 0.8216 0.8211 0.8224 0.8273
densenet161 0.8581 0.849 0.8323 0.8428 0.8413 0.84 0.8464

Table 3: Test accuracy of the final models for full retraining with the whole dataset (FRfull), the last full retraining
(FRlast) that has been used for prequential evaluation, online training (OL) and proactive training with trigger size 8 with-
out sparsity (PR8 column) and with different levels of sparsification using the topk sparse selector (Topk% columns with
k = 1, 0.1, 0.01). Highest accuracy achieved for each model is shown in bold, FRwhole ignored as it is considered the upper
limit.

lows closely the prequential curve of the non-sparse variant,
reducing the number of changed parameters per iteration by
10,000x; thus, enabling the continuous communication of
the gradients to a deployed model.

At the beginning of the prequential accuracy curves, both
online and proactive training perform worse than the ini-
tially trained model. The problem can be attributed to the
warm-started values of the ADAM optimizer. It can be fixed
by allowing for a warmup period before deploying updated
models in place of the initial model.

We now analyze how much the sparse selector topk re-
duces the deployment cost for densenet161, the largest model
in our experiments. For the sake of simplicity, we assume
that the total training time using the topk selector is 4000s
for all the selection ratios (the actual training times are 3870s,
4032s, and 4154s for selection ratios 1.0%, 0.1%, and 0.01%,
respectively). With a trigger size of 8, it performs 40,000

8 =

5, 000 iterations. Therefore, a training iteration is performed
roughly every training time

iterations '
4,000s
5,000 = 800ms. Assuming

each parameter is a 32bit float, we compare the bandwidth
consumed when sending parameters equal to the number of
the selected gradients by topk and its non-sparse variant:

– The non-sparse proactive training deploys a model (i.e.,
transferring all the parameters) about every 800ms, con-

suming a bandwidth of

26, 494, 090 ∗ 32bits
800ms

= 132.47 MBps.

– The topk 1.0% transfers 618 parameters plus their in-
dices, which we assume are 32bit each, every 800ms.
This consumes a bandwidth of

2 ∗ 264, 641 ∗ 32bits
800ms

' 2.65 MBps.

– The topk 0.1% transfers 67 parameters plus the indices
every 800ms, consuming a bandwidth of

2 ∗ 26, 498 ∗ 32bits
800ms

= 264.98 kBps.

– The topk 0.01% transfers 13 parameters plus indices ev-
ery 800ms, consuming a bandwidth of

2 ∗ 2, 886 ∗ 32bits
800ms

= 28.86 kBps.

We see that for a DL model like densenet, the bandwidth
needed for naive continuous deployment is 132.47 MBps,
which would be hard to reliably maintain in real-world ap-
plications. It would also consume much of the bandwidth
needed to receive and answer prediction queries. Sparsifica-
tion can greatly reduce the communication cost of transfer-
ring model updates over the network to a mere 28.86 kBps

Continuous Training and Deployment of Deep Learning Models 9

without any loss in model quality. In reality, this cost can be
much higher, because we use a slow GPU (Nvidia K40) by
modern standards. Nvidia K40 has a theoretical FP32 per-
formance of 5.046 TFLOPS while a more modern NVIDIA
GeForce RTX 2080 Ti has a theoretical FP32 performance
of 13.45 TFLOPS1.

A counter-intuitive finding is that at times sparse training
has achieved better prequential performance than its non-
sparse variant. We believe that large models are highly re-
dundant and the topk operator manages to select the less
redundant changes per iteration, ignoring the non-important
ones. In that way, sparsification provides a ”regularizing ef-
fect” in the training process.

Sparse training is not all about advantages; there is a
price to pay when using it. More specifically, the topk sparse
selection incurs a non-negligible overhead that increases the
proactive training time by 2x and 3x times for the larger
models that we experimented with. However, sparsification
reduces the deployment cost by orders of magnitude ren-
dering its overhead on training cost negligible in end-to-end
applications that comprise of training and deployment. Fur-
thermore, we can improve the overhead of the sparsification
by using fast ordered data structures (such as max-heaps or
B-trees) that makes the topk operator more performant. Note
that even with the extra overhead of the sparsification, the
training times of sparse proactive training remain well be-
low the full retraining. Although it does not alter the conclu-
sions of our analysis, we should note that our reported full
retraining times are wildly underestimated since we train the
models for 25 epochs, instead of a few hundreds of epochs
that the models require to achieve SOTA performance. For
example, Densenets need 300 epochs to achieve SOTA per-
formance on CIFAR-10 [2]. However, to achieve better ac-
curacy in that many epochs one needs to rigorously tune
the training hyper-parameters and learning rate schedules,
which we refrained from doing in this work for all of the
approaches for our simple choice of the hyperparameters.

6 Conclusion

Our work proposes to continuously train DL models with
proactive training, as soon as new training data become avail-
able. Meanwhile, we enable the continuous deployment of
very large DL models borrowing ideas from distributed DL
training to sparsify weight updates per iteration in order to
reduce the deployment cost. We reveal a regularizing ef-
fect of sparse training that at times allows achieving a better
model quality than the non-sparse training variant. More im-
portantly, it enables the continuous deployment of very large
models and opens a new avenue for continuous DL model
training and deployment in streaming settings.

1 https://www.techpowerup.com/gpu-specs

In the future, we plan to investigate the following topics.
First, we plan to study the impact of learning rate schedul-
ing and more complex trigger conditions for the continuous
training in order to compare against state-of-the-art perfor-
mance. Second, we want to deeply explore the reasons for
the instability at the very beginning of the continuous train-
ing, which in this study we attributed to the warm-up of the
ADAM optimizer. Third, we plan to analyze real deploy-
ment scenarios and test the continuous deployment approach
under unstable network connection with missing, delayed or
corrupt model changes. Fourth, we want to test our methods
with more datasets, and different flavors of DL models (e.g.,
Generative Adversarial Networks, Recurrent Networks), ap-
plied in a variety of domains(e.g., audio recognition, lan-
guage modelling, time-series understanding). Fifth, we aim
to test our methods on datasets that exhibit some concept
drift, where we find that methods for continuous training and
deployment are mostly needed.

Acknowledgements This work was funded by the German Ministry
for Education and Research as BIFOLD - Berlin Institute for the Foun-
dations of Learning and Data (ref. 01IS18025A and ref. 01IS18037A)
and German Federal Ministry for Economic Affairs and Energy, Project
“ExDRa” (01MD19002B).

References

1. G. Hinton, L. Deng, D. Yu, G.E. Dahl, A.r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T.N. Sainath, et al., IEEE
Signal processing magazine 29(6), 82 (2012)

2. G. Huang, Z. Liu, K.Q. Weinberger, L. van der Maaten, arXiv
preprint arXiv:1608.06993 1608 (2018)

3. T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., arXiv
preprint arXiv:2005.14165 (2020)

4. W. Samek, G. Montavon, S. Lapuschkin, C.J. Anders, K.R.
Müller, arXiv preprint arXiv:2003.07631 (2020)

5. Y. LeCun, in 2007 NIPS workshop on Efficient Learning, Vancou-
ver, December, vol. 7 (Citeseer, 2007), vol. 7

6. D. Amodei, D. Hernandez, Heruntergeladen von https://blog. ope-
nai. com/aiand-compute (2018)

7. S. Zeuch, A. Chaudhary, B. Del Monte, H. Gavriilidis,
D. Giouroukis, P.M. Grulich, S. Breß, J. Traub, V. Markl, arXiv
preprint arXiv:1910.07867 (2019)

8. B. Derakhshan, A.R. Mahdiraji, T. Rabl, V. Markl, in EDBT
(2019), pp. 397–408

9. J.T. Ash, R.P. Adams, arXiv preprint arXiv:1910.08475 (2019)
10. Y. Lin, S. Han, H. Mao, Y. Wang, W.J. Dally, arXiv preprint

arXiv:1712.01887 (2017)
11. S.U. Stich, J.B. Cordonnier, M. Jaggi, in Advances in Neural In-

formation Processing Systems (2018), pp. 4447–4458
12. A.F. Aji, K. Heafield, arXiv preprint arXiv:1704.05021 (2017)
13. L. Bottou, in Proceedings of COMPSTAT’2010 (Springer, 2010),

pp. 177–186
14. L. Bottou, in Neural networks: Tricks of the trade (Springer,

2012), pp. 421–436
15. P. Jaini, A. Rashwan, H. Zhao, Y. Liu, E. Banijamali, Z. Chen,

P. Poupart, in Conference on Probabilistic Graphical Models
(2016), pp. 228–239

10 Ioannis Prapas et al.

16. P. Wu, S.C. Hoi, H. Xia, P. Zhao, D. Wang, C. Miao, in Pro-
ceedings of the 21st ACM international conference on Multimedia
(2013), pp. 153–162

17. M. Mohammadi, A. Al-Fuqaha, S. Sorour, M. Guizani, IEEE
Communications Surveys & Tutorials 20(4), 2923 (2018)

18. D. Baylor, K. Haas, K. Katsiapis, S. Leong, R. Liu, C. Menwald,
H. Miao, N. Polyzotis, M. Trott, M. Zinkevich, in 2019 {USENIX}
Conference on Operational Machine Learning (OpML 19) (2019),
pp. 51–53

19. D. Baylor, E. Breck, H.T. Cheng, N. Fiedel, C.Y. Foo, Z. Haque,
S. Haykal, M. Ispir, V. Jain, L. Koc, et al., in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (2017), pp. 1387–1395

20. K. Katsiapis, K. Haas, in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Min-
ing (2019), pp. 3182–3182

21. V. Lomonaco, Continual learning with deep architectures. Ph.D.
thesis, alma (2019)

22. V. Lomonaco, D. Maltoni, L. Pellegrini, arXiv preprint
arXiv:1907.03799 1 (2019)

23. G.I. Parisi, V. Lomonaco, in Recent Trends in Learning From Data
(Springer, 2020), pp. 197–221

24. J. Pomponi, S. Scardapane, V. Lomonaco, A. Uncini, Neurocom-
puting (2020)

25. M. McCloskey, N.J. Cohen, in Psychology of learning and moti-
vation, vol. 24 (Elsevier, 1989), pp. 109–165

26. B. Recht, C. Re, S. Wright, F. Niu, in Advances in neural informa-
tion processing systems (2011), pp. 693–701

27. D. Alistarh, D. Grubic, J. Li, R. Tomioka, M. Vojnovic, in Ad-
vances in Neural Information Processing Systems (2017), pp.
1709–1720

28. A. Koloskova, S.U. Stich, M. Jaggi, arXiv preprint
arXiv:1902.00340 (2019)

29. Wikipedia contributors. Independent and identically dis-
tributed random variables — Wikipedia, the free ency-
clopedia (2021). URL https://en.wikipedia.
org/w/index.php?title=Independent_and_
identically_distributed_random_variables&
oldid=1017206855. [Online; accessed 9-August-2021]

30. A.P. Dawid, Journal of the Royal Statistical Society: Series A
(General) 147(2), 278 (1984)

31. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., in Advances in
neural information processing systems (2019), pp. 8026–8037

32. S. Marcel, Y. Rodriguez, in Proceedings of the 18th ACM interna-
tional conference on Multimedia (2010), pp. 1485–1488

33. Y. LeCun, http://yann. lecun. com/exdb/mnist/ (1998)
34. A. Krizhevsky, MSc Thesis, University of Toronto (2009)
35. Y. LeCun, et al., URL: http://yann. lecun. com/exdb/lenet 20(5),

14 (2015)
36. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.C. Chen, in

Proceedings of the IEEE conference on computer vision and pat-
tern recognition (2018), pp. 4510–4520

37. K. He, X. Zhang, S. Ren, J. Sun, in Proceedings of the IEEE con-
ference on computer vision and pattern recognition (2016), pp.
770–778

38. J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. Fei-Fei, in
2009 IEEE conference on computer vision and pattern recogni-
tion (Ieee, 2009), pp. 248–255

39. D.P. Kingma, J. Ba, arXiv preprint arXiv:1412.6980 (2014)
40. kuangliu. Train cifar10 with pytorch. https://github.com/

kuangliu/pytorch-cifar (2020). [Online, accessed on
01.05.2020]

