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Problem Formulation
• We use historical Earth observation and modern Machine 

Learning (ML) methods data to predict next-day’s fire danger.
• We implement a variety of Deep Learning (DL) models 

which capture the spatial, temporal or spatio-temporal context 
of the input, which is important for the problem at hand [1].

• We model the joint probability that a fire ignites and becomes 
large (>30 hectares)

Wildfire forecasting is not a typical ML problem and poses some 
major challenges that need to be considered:

• Wildfires caused by the complex spatio-temporal interactions
of the fire drivers (climate, vegetation, human activity)

• Wildfire occurrence is inherently stochastic. The lack of a fire
event does not mean lack of fire danger.

• Wildfires are rare events, leading to dataset imbalance.

Challenges

Experimental Setup

Datacube
We create and publish a harmonized 1 km x 1 km x 1 day
datacube covering most of Greece for years 2009-2020 [2], with 
variables that affect fire danger, and the historical burned areas:

Weather Data (min/max 2m temperature, min/max wind 
components, max total precipitation), MODIS Satellite variables
(Fpar, LAI, Day/Night LST, NDVI and EVI), Road Density, Population
Density, Corine Land Cover, Topography Variables (elevation, 
aspect, slope), post-processed Historical Burned Areas (EFFIS [3]).

• From the datacube we extract four different types of datasets 
and apply a different model for each (Figure 2).

• Target is for all types of datasets the same; the next-day's
burned value.

• Positive/Negative Sampling: Positives are all included. Negatives 
are two times more than the positives on days with no fire 
events.

Results

• Data-driven models follow the FWI empirical model.
• Fire danger maps from ML models provide better susceptibility 

patterns than FWI that only considers meteorology.
• Differences between models are subtle and are not captured by 

the metric table.

Conclusion
• We formulated daily fire danger forecasting as a machine learning

problem and published a harmonized country-wide datacube.

• We implemented some simple, yet effective DL models.

• We demonstrate that DL can be used for wildfire forecasting.
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Figure 1: Visualization of some of the datacube variables

Figure 2: Dataset extraction and experimental setup

Figure 3: Fire danger maps and FWI (Fire Weather Index) for three different test days

Table 1: Performance of the models on the test set (year 2020)
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Further Research
• Scale to larger area (e.g. Mediterranean).
• Refine evaluation metrics to quantitatively compare models.

• Understand models’ predictions with explainable AI methods.

https://arxiv.org/abs/2111.02736

• All models achieve a good performance with 𝐴𝑈𝑅𝑂𝐶 ≈ 0.9

• LSTM has a balanced performance between precision and recall.

• Best AUROC with ConvLSTM that exploits both spatial and
temporal context.
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