Deep Learning Methods for Daily Wildfire Danger Forecasting

<u>Ioannis Prapas^{1,2}, Spyros Kondylatos^{1,2}, Ioannis Papoutsis¹, Gustau Camps-Valls², Michele Ronco², Miguel-Ángel Fernández-Torres², Maria Piles Guillem², and Nuno Carvalhais³</u>

IAASARS, National Observatory of Athens
 Image Processing Laboratory (IPL), Universitat de València
 Max Planck Institute for Biogeochemistry

Problem Formulation

- We use historical Earth observation and modern Machine Learning (ML) methods data to predict next-day's fire danger.
- We implement a variety of Deep Learning (DL) models which capture the spatial, temporal or spatio-temporal context of the input, which is important for the problem at hand [1].
 We model the joint probability that a fire ignites and becomes large (>30 hectares)

Results

Model	Precision	Recall	F_1	AUROC
RF	0.832	0.508	0.631	0.898
LSTM	0.741	0.762	0.751	0.920
CNN	0.732	0.553	0.63	0.910
ConvLSTM	0.798	0.646	0.714	0.926

Challenges

Wildfire forecasting is not a typical ML problem and poses some major challenges that need to be considered:

- Wildfires caused by the complex spatio-temporal interactions of the fire drivers (climate, vegetation, human activity)
- Wildfire occurrence is inherently stochastic. The lack of a fire event does not mean lack of fire danger.
- Wildfires are rare events, leading to dataset imbalance.

Datacube

We create and publish a harmonized 1 km x 1 km x 1 day datacube covering most of Greece for years 2009-2020 [2], with variables that affect fire danger, and the historical burned areas: Weather Data (min/max 2m temperature, min/max wind components, max total precipitation), MODIS Satellite variables (Fpar, LAI, Day/Night LST, NDVI and EVI), Road Density, Population Table 1: Performance of the models on the test set (year 2020)

- All models achieve a good performance with AUROC ≈ 0.9
- LSTM has a balanced performance between precision and recall.
- Best AUROC with ConvLSTM that exploits both spatial and temporal context.

Density, Corine Land Cover, Topography Variables (elevation, aspect, slope), post-processed **Historical Burned Areas** (EFFIS [3]).

Figure 1: Visualization of some of the datacube variables

Experimental Setup

Figure 3: Fire danger maps and FWI (Fire Weather Index) for three different test days

- Data-driven models follow the FWI empirical model.
- Fire danger maps from ML models provide better susceptibility patterns than FWI that only considers meteorology.
- Differences between models are subtle and are not captured by the metric table.

Conclusion

- We formulated daily fire danger forecasting as a machine learning problem and published a harmonized country-wide datacube.
- We implemented some simple, yet effective DL models.
- We demonstrate that DL can be used for wildfire forecasting.

Further Research

- Scale to larger area (e.g. Mediterranean).
- Refine evaluation metrics to quantitatively compare models.

Figure 2: Dataset extraction and experimental setup

- From the datacube we extract four different types of datasets and apply a different model for each (Figure 2).
- Target is for all types of datasets the same; the next-day's burned value.
- Positive/Negative Sampling: Positives are all included. Negatives are two times more than the positives on days with no fire events.

• Understand models' predictions with explainable AI methods.

References

[1] Reichstein et al. Deep learning and process understanding for datadriven Earth system science. *Nature* (2019)

[2] Prapas et al. A datacube for the analysis of wildfires in Greece. *Zenodo*. <u>https://doi.org/10.5281/zenodo.4943354</u>. (2021)

[3] San-Miguel-Ayanz et al. The european forest fire information system in the context of environmental policies of the european union. *Forest Policy and Economics.* (2013)

https://arxiv.org/abs/2111.02736

Artificial Intelligence for Humanitarian Assistance and Disaster Response Workshop NeurIPS 2021

