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Problem and Challenges

Wildfire danger forecasting as Machine Learning (ML) task.

Wildfire forecasting is not a typical ML problem and poses some major challenges [1].

* Wildfires caused by the complex interactions of the fire drivers (climate, vegetation,
human activity), operating at different spatial and temporal scales.

» Wildfire occurrence is inherently stochastic. The lack of a fire event does not mean
lack of fire danger.

* Wildfires affect humans and the environment in a multitude of ways. Crucial to go
beyond mere forecasting into understanding with eXplainable Al (XAl).

Datacube

Open-access daily 1km x 1km datacube [2].
1253 km x 983 km, Eastern Mediterranean surrounding Greece, years 2009-2021.
Climate, Vegetation, Human drivers: Weather (ERAS), Satellite (MODIS), Soil Moisture
(EDO), Topography (EU-DEM), Land Cover (Corine), Socioeconomic (Worldpop).
Output: Post-processed historical burned areas (JRC EFFIS).
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Figure 1: Distribution of input variables depending on the target.

Setup

e Three different types of datasets (pixel, temporal, spatio-temporal), each one for a
different model i.e Random Forest (RF), LSTM and ConvLSTM (Fig. 2).

e Target Is for all datasets the same; next-day's burned value.

e Positive/Negative Sampling: Positives are all included. Two times more negatives than
positives on no fire days.

e Time split: Training in 2009-2019. Testing in 2020, a normal fire season, and 2021 an
extreme fire season (Fig. 3).
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Figure 2: Dataset extraction and experimental setup.
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Figure 3: Difference in input variables (a) and (b) burned area for train and the test sets.
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* Deep Learning (DL) models better than RF (Table 1) and all models better than FWI (Fig. 4)
 Temporal context (LSTM) sufficient at a high degree.

* Produced dangers maps demonstrate spatiotemporal variability (Fig. 4).

* Models generalize well for 2021, an extreme year (Table 1, Fig. 5).

(a) Results 2020 (b) Results 2021
Model Precision Recall F; Precision Recall F;
RF 0.838 0.603 0.701 0.876 0.697 0.777
LSTM 0.865 0.755 0.806 0.901 0.855 0.878
ConvLSTM 0.921 0.716 0.809 0.947 0.804 0.867

Table 1: Performance of the models on the test sets (years 2020, 2021).
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Figure 4: Fire Danger by LSTM for 3 consecutive days.
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Figure 5: ROC curves and AUC values for LSTM, ConvLSTM, RF and FWI.

Explainability

* Soil moisture, NDVI and weather are the most important predictors (Fig. 6).
« Changes in their importance across events reveal diverse wildfire types (Fig. 7).

« XAl uncovers physically consistent associations and temporal dynamics (Fig. 8)
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Figure 6: SHAP values for burned cells. Figure 7: Wind-driven Vs Drought-driven wildfires.
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Figure 8: Learned temporal dynamics of the fire drivers.
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Conclusion

* DL models predicting daily wildfire danger, outperform the FWI, improve wildfire
forecasting and generalize well even in the extreme year 2021.

» Explainability reveals that DL models learn meaningful interactions.

* The presented methodology paves the way to more robust, accurate and trustworthy
data-driven anticipation of wildfires.
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