
• Three different types of datasets (pixel, temporal, spatio-temporal), each one for a

different model i.e Random Forest (RF), LSTM and ConvLSTM (Fig. 2).

• Target is for all datasets the same; next-day's burned value.

• Positive/Negative Sampling: Positives are all included. Two times more negatives than

positives on no fire days.

• Time split: Training in 2009-2019. Testing in 2020, a normal fire season, and 2021 an

extreme fire season (Fig. 3).

Wildfire danger forecasting as Machine Learning (ML) task.

Wildfire forecasting is not a typical ML problem and poses some major challenges [1].

• Wildfires caused by the complex interactions of the fire drivers (climate, vegetation, 

human activity), operating at different spatial and temporal scales.

• Wildfire occurrence is inherently stochastic. The lack of a fire event does not mean 

lack of fire danger.

• Wildfires affect humans and the environment in a multitude of ways. Crucial to go 

beyond mere forecasting into understanding with eXplainable AI (XAI).

Table 1: Performance of the models on the test sets (years 2020, 2021).
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Open-access daily 1km x 1km datacube [2].

1253 km x 983 km, Eastern Mediterranean surrounding Greece, years 2009-2021.

Climate, Vegetation, Human drivers: Weather (ERA5), Satellite (MODIS), Soil Moisture 

(EDO), Topography (EU-DEM), Land Cover (Corine), Socioeconomic (Worldpop).

Output: Post-processed historical burned areas (JRC EFFIS).

• Deep Learning (DL) models better than RF (Table 1) and all models better than FWI (Fig. 4)

• Temporal context (LSTM) sufficient at a high degree.

• Produced dangers maps demonstrate spatiotemporal variability (Fig. 4).

• Models generalize well for 2021, an extreme year (Table 1, Fig. 5).

Figure 2: Dataset extraction and experimental setup.
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Figure 4: Fire Danger by LSTM for 3 consecutive days.

Figure 5: ROC curves and AUC values for LSTM, ConvLSTM, RF and FWI.

• DL models predicting daily wildfire danger, outperform the FWI, improve wildfire 

forecasting and generalize well even in the extreme year 2021.

• Explainability reveals that DL models learn meaningful interactions.

• The presented methodology paves the way to more robust, accurate and trustworthy 

data-driven anticipation of wildfires.

• Soil moisture, NDVI and weather are the most important predictors (Fig. 6).

• Changes in their importance across events reveal diverse wildfire types (Fig. 7).

• XAI uncovers physically consistent associations and temporal dynamics (Fig. 8)

Conclusion

Figure 6: SHAP values for burned cells.

Figure 3: Difference in input variables (a) and (b) burned area for train and the test sets.
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Figure 7: Wind-driven Vs Drought-driven wildfires.

Figure 8: Learned temporal dynamics of the fire drivers.

(a) Results 2020 (b) Results 2021

Model Precision Recall 𝐹1 Precision Recall 𝐹1

RF 0.838 0.603 0.701 0.876 0.697 0.777

LSTM 0.865 0.755 0.806 0.901 0.855 0.878

ConvLSTM 0.921 0.716 0.809 0.947 0.804 0.867

Figure 1: Distribution of input variables depending on the target.
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