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ABSTRACT
We approach the problem of human action recognition in videos by
distinguishing between simple and complex actions. To recognize
simple actions, we take advantage of the latest advances with 3D
convolutional networks, which are able to offer a generic video
snippet descriptor. For the complex ones, which involve interac-
tion between more than one individual, we use the recognized
simple human actions of the previous step to generate Event Cal-
culus theories. This way, we aim to achieve a high-level human
action understanding, combining the opaque effectiveness of deep
learning and the transparent reasoning of computational logic. Our
experimental results on a benchmark activity recognition dataset
encourage further research towards this direction.
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1 INTRODUCTION
Paraphrasing [4], human activities are themost basic human-centered
interactions with meaning. Human activity recognition is consid-
ered to be the epitome of all computer vision tasks not only due
to its inherent complexity as a task, but also because of its numer-
ous prospective applications and the implications that they will
have in our daily life. A lot of modern work has focused in finding
good generic representations of activities or developing end-to-end
black box architectures that achieve a high accuracy in recogniz-
ing human activities. Recent advances with deep convolutional
neural networks as well as the creation of big annotated datasets
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has led to improved results, in some cases achieving near perfect
performance.

However, a key disadvantage of these types of approaches, com-
pared to human cognition, is model interpretability. While a human
can analyse the properties of a complex activity and decompose it
to the individual actions that constitute it, these models can only
reply with relatively high accuracy if a given activity is happening
or not. In this work, we would like to add some model transparency
to the activity recognition setup.

To this end, we see the problem of human action recognition
as consisting of two parts: 1) simple action recognition, whereby
the task is to detect ‘simple activities‘ on individual video frames,
such as walking, running, being active or inactive, and 2) a complex
action (consisting of simple actions) recognition, where we aim to
recognize ‘complex activities‘ between two or more tracked entities,
such as meeting and moving together. For the first part, we want
to take advantage of the latest advances with 3D convolutional
networks [5, 13], which are able to offer a generic video snippet
descriptor. For the second part, we use the recognized simple human
actions to generate Event Calculus [7] theories for more complex
ones, which involve interaction between two or more individuals.

The contribution of this work lies mainly in bridging the gap
between the opaque (black box nature) effectiveness of deep learn-
ing to make sense out of raw data and the transparent reasoning of
Event Calculus, which also allows us to embed human knowledge
in the problem-solving process. Because observations capture only
certain aspects of the real world, but logic often represents generic
knowledge, we would like to encourage research to move away
from end-to-end black box architectures and towards hybrids with
computational logic.

The rest of the paper is structured as follows: Section 2 presents
current trends in activity recognition. Section 3 presents the nec-
essary background to continue to Section 4, in which we describe
our experimental setup. In Section 5 we present our experimental
results. Finally, in Section 6, we summarize our work and give hints
for future relevant research plans.

2 RELATEDWORK
Activity recognition is a highly researched field, thus offering a rich
bibliography with a great variety of proposed solutions. Central
role to almost every proposed solution plays the pursuit for a good
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Table 1: The basic predicates and domain-independent ax-
ioms of the Event Calculus

Predicate Predicate Meaning
happensAt(E, T ) Event E occurs at time T
initiatedAt(F , T ) At time T , a period of time for

which fluent F holds, is initiated
terminatedAt(F , T ) At time T , a period of time for

which fluent F holds, is terminated
holdsAt(F , T ) Fluent F holds at time T

Axioms
holdsAt(F , T + 1) ← holdsAt(F , T + 1) ←

initiatedAt(F , T ). (1) holdsAt(F , T ), (2)
not terminatedAt(F , T ).

and generic representation of actions. A good representation would
be invariant to semantically meaningless changes of the input.

For this, holistic representations [3, 14, 15] have been proposed,
which try to capture pose, articulated movement, but have been
blamed to be too rough, unable to capture fine-grained movements
that are a part of actions. Therefore, a big part of the research com-
munity has moved to generic local descriptors[16, 17]. In recent
years, though, flavours of convolutional neural networks have man-
aged to take over the field, offering the advantage of learning the
good representations directly from the data, rather than relying in
expert knowledge and intuition. Thus, the generality of the learned
representation is only limited by the generality of the training data.
Many times it is left to those models to do the full recognition of
complex actions. However, it is often highly important for a model
to be interpretable and this is a part where neural networks truly
fall short.

To make up for this, we look into producing Event Calculus
theories of complex activities. Existing works are using ground
truth or stochastically noisy data of simple event streams as input
[1, 2, 10, 11]. Our work differs in that it explores the whole pipeline:
From raw data to simple actions with convolutional networks and
from the produced simple actions to Event Calculus.

3 BACKGROUND
3.1 Convolutional neural networks
Deep convolutional neural networks are currently the state-of-the-
art algorithm for most computer vision tasks[8, 12]. Their power
lies in their capacity to learn powerful representations directly from
data, in contrast to approaches with hand-crafted features which
rely on the intuition of field experts on what constitutes a good rep-
resentation. A deficit of traditional convolutional neural networks
when it comes to videos, is their inability to capture time depen-
dencies. 3D convolutional networks manage to incorporate short
time dependency with a very simple extension from 2D (spatial),
to 3D (spatiotemporal) convolutional filters.

3.1.1 Feature extraction. Trained in enough data, deep neural
networks can learn in their first layers generic representations [13]
that can be useful for datasets different from the ones, which were
used for their original training. Thus, it is often a good choice to
use pre-trained models as feature extractors. In this paper, we will
use C3D[13], a state-of-the-art 3D convolutional network, trained
on SPORTS1M datasets which contains more than 1 million sports
videos collected from Youtube.

3.2 Event Calculus
The Event Calculus (EC) [7] is a temporal logic used for reasoning
about events and their effects. Its ontology consists of time points
(integer numbers); fluents, i.e. properties that have different values
in time; and events, i.e. occurrences in time that may alter fluents’
values. The axioms of EC incorporate the common sense law of
inertia, according to which fluents persist over time, unless they are
affected by an event. We use a simplified version of the EC that has
been shown to suffice for event recognition [1]. The basic predicates
and its domain-independent axioms are presented in Table 1. Axiom
(1) states that a fluent F holds at timeT if it has been initiated at the
previous time point, while Axiom (2) states that F continues to hold
unless it is terminated. Definitions for initiatedAt/2 and terminatedAt/2
predicates are given in an application-specific manner by a set of
domain-specific axioms and guide the event recognition process.
In this paper, we will avoid constructing such rules, using OLED
[6], a state-of-the-art Inductive Logic Programming system, able to
handle noisy data by relaxing the requirement to produce optimal
theories covering all the input examples.

4 EXPERIMENTAL SETUP
We aim to achieve a high-level activity recognition by distinguish-
ing between simple and complex action recognition. This separation
is presented in Figure 1.

4.1 Simple activity classification
For the simple activity recognition we take as granted the detection
of individuals in videos given as bounding boxes. We then extract
the C3D features for the tracked objects and train a Support Vector
Machine (SVM) to classify feature vectors as simple activity classes.
This procedure is illustrated in the Simple Action Recognition part
of Figure 1.

4.1.1 C3D features. The C3D network takes as input 16 RGB
video frames of size 112x112. From every video we take crops of
the bounding boxes that contain individuals and re-size them to
112x112. We feed the C3D network with batches of 16 consecutive
frames of size 112x112 pixels (short clips) and use as a feature
vector (1x4096 ) the output of the first fully connected layer (fc6)
of the network. Each of these feature vectors finally represents 16
consecutive frames, in which an individual appears in the video. For
training our model, we only keep the features in which a constant
annotation is given. Given the generated feature vectors and the
ground truth annotation, we train a One-Vs-Rest Linear SVM, as
normally suggested with the C3D features. To evaluate our method,
we perform the Leave-One-Video-Out Cross Validation method and
count the total True Positive, False Positive, False Negative for each
of the classes to finally compute the precision, recall and f1-score
micro-metrics. The results are presented in Table 2.

4.2 Event Calculus theories for complex
activities

We define a complex action as consisting of many simple actions
performed at a previous time by one or more individuals. We aim to
generate Event Calculus theories to recognize complex events, by
combining the imperfect simple events that have been recognized
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Figure 1: Proposal architecture

by the process presented in the previous subsection. To this end, we
use a system for Online Learning of Event Definitions (OLED) [6].
OLED is a general Inductive Logic Programming system that is able
to handle noise, by relaxing the requirement to cover all the training
examples that it comes across. As depicted in the Complex Event
Reasoning part of Figure 1, OLED will take as input the domain-
independent Event Calculus axioms, the generated simple actions
from the previous step, as well as positive and negative examples
describing when a complex action is taking place. Its output will
be domain-dependent Event Calculus theories, i.e. initiatedAt and
terminatedAt rules for the complex actions meant to be recognized.

5 EXPERIMENTAL RESULTS
We illustrate our approach using the CAVIAR project dataset1,
which covers our need for annotation both for simple and com-
plex actions. The CAVIAR dataset consists of videos where actors
perform some two types of actions. The first type corresponds to
simple actions and consists of knowledge about the activities of
a person at a certain video frame/time point, such as walking, or
being inactive. The second action type corresponds to complex
events and consists of activities that involve more than one person,
e.g. two people meeting each other, or moving together. The goal
is to recognize complex events as combinations of simple events
automatically recognized from the raw input videos.

5.1 Simple activity recognition results
Seen in Tables 2 and 3, the running instances are never being classi-
fied correctly, but this seems to be a result of the very low number
of running examples that are available in the dataset. The over-
represented class walking is generally classified correctly, but many
examples of the other classes get confused with it. This is again
1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

Table 2: Micro-averaged precision, recall and f1-scores for
every class of simple actions.

Class Precision Recall F1-score Sample size
Inactive 0.80 0.55 0.65 479
Active 0.47 0.39 0.42 203
Walking 0.86 0.97 0.91 1547
Running 0.00 0.00 - 24

Table 3: Confusion matrix for the simple activity classifica-
tion.

Predictions
Inactive Active Walking Running

Ground Truth Inactive 263 72 144 0
Active 45 80 78 0
Walking 19 26 1499 2
Running 0 0 24 0

a problem commonly presented when dealing with imbalanced
classes, but in our case this is not the sole problem. Intuitively, the
inactive/walking classes should be easily distinguishable, because
in the inactive examples very little motion occurs, while a lot of
motion occurs in the walking ones. Qualitatively examining the
inactive examples that get confused with walking, we observe that
it is a matter of low resolution, relative to the size of input that is
expected by the C3D network. Enlarging small-sized crops, aug-
ments the noise present in the videos, which is then mistakenly
translated to motion in the generated feature vectors. So this lousy
performance is mainly a result of bad compatibility of the variable
tracked object size in the CAVIAR dataset and the static input that
the C3D network expects.

Other work [9] at the CAVIAR dataset achieves near perfect
results. However, it is not directly comparable, as they assume that
the geometry of the spacewhere the videos have been shot is known.

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Table 4: Confusion matrix for the complex activity classifi-
cation.

Activity Data TP FP FN Precision Recall f1
Meeting Ground Truth[6]2 2750 226 844 0.92 0.77 0.84

Ours 2787 1159 807 0.71 0.78 0.74
Moving Ground Truth[6]2 4700 3314 1583 0.59 0.75 0.66

Ours 3967 5573 2315 0.41 0.63 0.5

This allows them to use simple features, such as the velocity and the
shape of the tracking bounding boxes. For the proof-of-concept of
our method, we concur that our achieved results suffice for moving
forward to complex action recognition.

5.2 Complex activity recognition results
As expected and shown in Table 4, the manual annotation data
(ground truth), always produce better performing theories than
ours. For the meeting activity we see that the two results are highly
comparable, confirming the findings of [1], that the recognition of
this activity is resistant to noise. Moving activity recognition shows
a substantially lower performance, a result of almost double FPs.
This is explained by the type of noise in our data. Simple activities
inactive and running are a part of the terminatedAt rules for the
moving activity and as they are so much being confused in the
simple activity recognition part, the activity is falsely persisting in
time.

6 DISCUSSION
We presented a novel approach, consisting of two stages of learning
for activity reasoning in videos. In the first stage, we extract deep
learned features from a state-of-the-art 3D convolutional neural net-
work, with which we train an SVM to classify simple actions. This
process is far from perfect, as transformations that add noise are
needed to prepare the input data to the pretrained neural network.
However, using the recognized simple actions as input to an ILP
system capable of learning Event Calculus theories, we demonstrate
the robustness of OLED to learn from imperfect data. Computa-
tional logic learning approaches can in fact work on par with deep
learning ones to output transparent models, but their better fusion
in a unified learning process remains a topic that needs further
research.

For future work, we would like to experiment with unsupervised
approaches that instead of specific classified actions, would generate
low level symbols that could potentially be used to learn Event
Calculus theories for complex events. Like that, we will be able to
try our approach in bigger datasets where annotation for simple
actions is not present, as is the general case. Deep learning relies on
big datasets and we find this to be the next step towards a smooth
fusion with symbolic learning. A unified learning approach can
then be the next goal.
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